Home
Search results “Define data mining model”
Introduction to data mining and architecture  in hindi
 
09:51
#datamining #datawarehouse #lastmomenttuitions Take the Full Course of Datawarehouse What we Provide 1)22 Videos (Index is given down) + Update will be Coming Before final exams 2)Hand made Notes with problems for your to practice 3)Strategy to Score Good Marks in DWM To buy the course click here: https://lastmomenttuitions.com/course/data-warehouse/ Buy the Notes https://lastmomenttuitions.com/course/data-warehouse-and-data-mining-notes/ if you have any query email us at [email protected] Index Introduction to Datawarehouse Meta data in 5 mins Datamart in datawarehouse Architecture of datawarehouse how to draw star schema slowflake schema and fact constelation what is Olap operation OLAP vs OLTP decision tree with solved example K mean clustering algorithm Introduction to data mining and architecture Naive bayes classifier Apriori Algorithm Agglomerative clustering algorithmn KDD in data mining ETL process FP TREE Algorithm Decision tree
Views: 255858 Last moment tuitions
data mining task
 
08:44
Views: 4721 Sailaja NV
What is Classification? What is a Classifier?
 
06:36
My web page: www.imperial.ac.uk/people/n.sadawi
Views: 66430 Noureddin Sadawi
KDD ( knowledge data discovery )  in data mining in hindi
 
08:50
#kdd #datawarehouse #datamining #lastmomenttuitions Take the Full Course of Datawarehouse What we Provide 1)22 Videos (Index is given down) + Update will be Coming Before final exams 2)Hand made Notes with problems for your to practice 3)Strategy to Score Good Marks in DWM To buy the course click here: https://lastmomenttuitions.com/course/data-warehouse/ Buy the Notes https://lastmomenttuitions.com/course/data-warehouse-and-data-mining-notes/ if you have any query email us at [email protected] Index Introduction to Datawarehouse Meta data in 5 mins Datamart in datawarehouse Architecture of datawarehouse how to draw star schema slowflake schema and fact constelation what is Olap operation OLAP vs OLTP decision tree with solved example K mean clustering algorithm Introduction to data mining and architecture Naive bayes classifier Apriori Algorithm Agglomerative clustering algorithmn KDD in data mining ETL process FP TREE Algorithm Decision tree
Views: 85735 Last moment tuitions
Data Mining Classification and Prediction ( in Hindi)
 
05:57
A tutorial about classification and prediction in Data Mining .
Views: 39533 Red Apple Tutorials
Data Mining, Classification, Clustering, Association Rules, Regression, Deviation
 
05:01
Complete set of Video Lessons and Notes available only at http://www.studyyaar.com/index.php/module/20-data-warehousing-and-mining Data Mining, Classification, Clustering, Association Rules, Sequential Pattern Discovery, Regression, Deviation http://www.studyyaar.com/index.php/module-video/watch/53-data-mining
Views: 90972 StudyYaar.com
What is a Data Model?
 
04:07
Why is a Data Model so important? What is a packaged Data Model? How does a Data Model fit into a Data Warehousing project? This video addresses these basic questions and helps Business Users have realistic expectations about packaged models. To Talk with a Specialist go to: http://www.intricity.com/intricity101/ www.intricity.com
Views: 89486 Intricity101
Data Mining Classification - Basic Concepts
 
03:39
Classification in Data Mining with classification algorithms. Explanation on classification algorithm the decision tree technique with Example.
data mining techniques
 
14:00
This video describes data mining tasks or techniques in brief. Each technique requires a separate explanation as well. #datamining #techniques #weka Data mining tutorial in hindi Weka tutorial in hindi Data mining tutorial
Views: 9338 yaachana bhawsar
What is DATA MODELING? What does DATA MODELING mean? DATA MODELING meaning & explanation
 
04:00
✪✪✪✪✪ WANT VIDEO LIKE THIS ONE? ORDER IT HERE FROM INDUSTRY EXPERTS - http://bit.ly/2IlNl98 ✪✪✪✪✪ ✪✪✪✪✪ The Audiopedia Android application, INSTALL NOW - https://play.google.com/store/apps/details?id=com.wTheAudiopedia_8069473 ✪✪✪✪✪ What is DATA MODELING? What does DATA MODELING mean? DATA MODELING meaning - DATA MODELING definition - DATA MODELING explanation. Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/by-sa/3.0/ license. Data modeling in software engineering is the process of creating a data model for an information system by applying formal data modeling techniques. Data modeling is a process used to define and analyze data requirements needed to support the business processes within the scope of corresponding information systems in organizations. Therefore, the process of data modeling involves professional data modelers working closely with business stakeholders, as well as potential users of the information system. There are three different types of data models produced while progressing from requirements to the actual database to be used for the information system. The data requirements are initially recorded as a conceptual data model which is essentially a set of technology independent specifications about the data and is used to discuss initial requirements with the business stakeholders. The conceptual model is then translated into a logical data model, which documents structures of the data that can be implemented in databases. Implementation of one conceptual data model may require multiple logical data models. The last step in data modeling is transforming the logical data model to a physical data model that organizes the data into tables, and accounts for access, performance and storage details. Data modeling defines not just data elements, but also their structures and the relationships between them. Data modeling techniques and methodologies are used to model data in a standard, consistent, predictable manner in order to manage it as a resource. The use of data modeling standards is strongly recommended for all projects requiring a standard means of defining and analyzing data within an organization, e.g., using data modeling: - to assist business analysts, programmers, testers, manual writers, IT package selectors, engineers, managers, related organizations and clients to understand and use an agreed semi-formal model the concepts of the organization and how they relate to one another; - to manage data as a resource; - for the integration of information systems; - for designing databases/data warehouses (aka data repositories). Data modeling may be performed during various types of projects and in multiple phases of projects. Data models are progressive; there is no such thing as the final data model for a business or application. Instead a data model should be considered a living document that will change in response to a changing business. The data models should ideally be stored in a repository so that they can be retrieved, expanded, and edited over time. Whitten et al. (2004) determined two types of data modeling: - Strategic data modeling: This is part of the creation of an information systems strategy, which defines an overall vision and architecture for information systems is defined. Information engineering is a methodology that embraces this approach. - Data modeling during systems analysis: In systems analysis logical data models are created as part of the development of new databases. Data modeling is also used as a technique for detailing business requirements for specific databases. It is sometimes called database modeling because a data model is eventually implemented in a database.
Views: 14580 The Audiopedia
Data Science for Business: Data Mining Process and CRISP DM
 
07:46
This lesson provides an introduction to the data mining process with a focus on CRISP-DM. This video was created by Cognitir (formerly Import Classes). Cognitir is a global company that provides live training courses to business & finance professionals globally to help them acquire in-demand tech skills. For additional free resources and information about training courses, please visit: www.cognitir.com
Views: 16029 Cognitir
Introduction to Data Mining: Data Aggregation
 
04:07
In this Data Mining Fundamentals tutorial, we discuss our first data cleaning strategy, data aggregation. Aggregation is combining two or more attributes (or objects) into a single attribute (or object). -- Learn more about Data Science Dojo here: https://hubs.ly/H0hCnj10 Watch the latest video tutorials here: https://hubs.ly/H0hCnHV0 See what our past attendees are saying here: https://hubs.ly/H0hCnj40 -- At Data Science Dojo, we believe data science is for everyone. Our in-person data science training has been attended by more than 4000+ employees from over 830 companies globally, including many leaders in tech like Microsoft, Apple, and Facebook. -- Like Us: https://www.facebook.com/datasciencedojo Follow Us: https://plus.google.com/+Datasciencedojo Connect with Us: https://www.linkedin.com/company/datasciencedojo Also find us on: Google +: https://plus.google.com/+Datasciencedojo Instagram: https://www.instagram.com/data_science_dojo Vimeo: https://vimeo.com/datasciencedojo
Views: 10896 Data Science Dojo
Data Mining - Clustering
 
06:52
What is clustering Partitioning a data into subclasses. Grouping similar objects. Partitioning the data based on similarity. Eg:Library. Clustering Types Partitioning Method Hierarchical Method Agglomerative Method Divisive Method Density Based Method Model based Method Constraint based Method These are clustering Methods or types. Clustering Algorithms,Clustering Applications and Examples are also Explained.
Data Mining Tasks
 
03:40
Including core tasks
Views: 1660 bade rebecca
Introduction to Data Mining: Similarity & Dissimilarity
 
03:43
In this Data Mining Fundamentals tutorial, we introduce you to similarity and dissimilarity. Similarity is a numerical measure of how alike two data objects are, and dissimilarity is a numerical measure of how different two data objects are. We also discuss similarity and dissimilarity for single attributes. -- Learn more about Data Science Dojo here: https://hubs.ly/H0hCsmV0 Watch the latest video tutorials here: https://hubs.ly/H0hCr-80 See what our past attendees are saying here: https://hubs.ly/H0hCsmW0 -- At Data Science Dojo, we believe data science is for everyone. Our in-person data science training has been attended by more than 4000+ employees from over 830 companies globally, including many leaders in tech like Microsoft, Apple, and Facebook. -- Like Us: https://www.facebook.com/datasciencedojo Follow Us: https://plus.google.com/+Datasciencedojo Connect with Us: https://www.linkedin.com/company/datasciencedojo Also find us on: Google +: https://plus.google.com/+Datasciencedojo Instagram: https://www.instagram.com/data_science_dojo Vimeo: https://vimeo.com/datasciencedojo
Views: 20660 Data Science Dojo
Introduction to Data Mining-: Lesson- Data Cube & its Operations
 
09:19
You can find the entire course here: https://goo.gl/rM2W1E You can find all the courses by Hashleen Kaur here: https://goo.gl/SPmZoX Introduction to Data Mining| | Lesson- Data Cube & its Operations In this lesson, Hashleen K has discussed about OLAP cube and it's operations. Download the Unacademy Learning App from the Google Play Store here:- https://goo.gl/02OhYI Download the Unacademy Educator app from the Google Play Store here: https://goo.gl/H4LGHE Visit Our Facebook Group on Engineering Curriculum here: https://goo.gl/5EqfqS
Introduction to Datawarehouse in hindi | Data warehouse and data mining Lectures
 
10:36
#datawarehouse #datamining #lastmomenttuitions Take the Full Course of Datawarehouse What we Provide 1)22 Videos (Index is given down) + Update will be Coming Before final exams 2)Hand made Notes with problems for your to practice 3)Strategy to Score Good Marks in DWM To buy the course click here: https://lastmomenttuitions.com/course/data-warehouse/ Buy the Notes https://lastmomenttuitions.com/course/data-warehouse-and-data-mining-notes/ if you have any query email us at [email protected] Index Introduction to Datawarehouse Meta data in 5 mins Datamart in datawarehouse Architecture of datawarehouse how to draw star schema slowflake schema and fact constelation what is Olap operation OLAP vs OLTP decision tree with solved example K mean clustering algorithm Introduction to data mining and architecture Naive bayes classifier Apriori Algorithm Agglomerative clustering algorithmn KDD in data mining ETL process FP TREE Algorithm Decision tree
Views: 323871 Last moment tuitions
How data mining works
 
06:01
In this video we describe data mining, in the context of knowledge discovery in databases. More videos on classification algorithms can be found at https://www.youtube.com/playlist?list=PLXMKI02h3_qjYoX-f8uKrcGqYmaqdAtq5 Please subscribe to my channel, and share this video with your peers!
Views: 237587 Thales Sehn Körting
What is Data Mining
 
08:10
Data mining (the analysis step of the "Knowledge Discovery in Databases" process, or KDD), an interdisciplinary subfield of computer science, is the computational process of discovering patterns in large data sets involving methods at the intersection of artificial intelligence, machine learning, statistics, and database systems. The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use. Aside from the raw analysis step, it involves database and data management aspects, data preprocessing, model and inference considerations, interestingness metrics, complexity considerations, post-processing of discovered structures, visualization, and online updating. The term is a buzzword, and is frequently misused to mean any form of large-scale data or information processing (collection, extraction, warehousing, analysis, and statistics) but is also generalized to any kind of computer decision support system, including artificial intelligence, machine learning, and business intelligence. In the proper use of the word, the key term is discovery[citation needed], commonly defined as "detecting something new". Even the popular book "Data mining: Practical machine learning tools and techniques with Java"(which covers mostly machine learning material) was originally to be named just "Practical machine learning", and the term "data mining" was only added for marketing reasons. Often the more general terms "(large scale) data analysis", or "analytics" -- or when referring to actual methods, artificial intelligence and machine learning -- are more appropriate. The actual data mining task is the automatic or semi-automatic analysis of large quantities of data to extract previously unknown interesting patterns such as groups of data records (cluster analysis), unusual records (anomaly detection) and dependencies (association rule mining). This usually involves using database techniques such as spatial indices. These patterns can then be seen as a kind of summary of the input data, and may be used in further analysis or, for example, in machine learning and predictive analytics. For example, the data mining step might identify multiple groups in the data, which can then be used to obtain more accurate prediction results by a decision support system. Neither the data collection, data preparation, nor result interpretation and reporting are part of the data mining step, but do belong to the overall KDD process as additional steps.
Views: 52528 John Paul
What is DATA CUBE? What does DATA CUBE mean? DATA CUBE meaning, definition & explanation
 
03:32
What is DATA CUBE? What does DATA CUBE mean? DATA CUBE meaning - DATA CUBE definition - DATA CUBE explanation. Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/by-sa/3.0/ license. SUBSCRIBE to our Google Earth flights channel - https://www.youtube.com/channel/UC6UuCPh7GrXznZi0Hz2YQnQ In computer programming contexts, a data cube (or datacube) is a multi-dimensional array of values, commonly used to describe a time series of image data. The data cube is used to represent data along some measure of interest. Even though it is called a 'cube', it can be 1-dimensional, 2-dimensional, 3-dimensional, or higher-dimensional. Every dimension represents a new measure whereas the cells in the cube represent the facts of interest. The EarthServer initiative has established requirements which a datacube service should offer. Many high-level computer languages treat data cubes and other large arrays as single entities distinct from their contents. These languages, of which APL, IDL, NumPy, PDL, and S-Lang are examples, allow the programmer to manipulate complete film clips and other data en masse with simple expressions derived from linear algebra and vector mathematics. Some languages (such as PDL) distinguish between a list of images and a data cube, while many (such as IDL) do not. Array DBMSs (Database Management Systems) offer a data model which generically supports definition, management, retrieval, and manipulation of n-dimensional datacubes. This database category has been pioneered by the rasdaman system since 1994. Multi-dimensional arrays can meaningfully represent spatio-temporal sensor, image, and simulation data, but also statistics data where the semantics of dimensions is not necessarily of spatial or temporal nature. Generally, any kind of axis can be combined with any other into a datacube. In mathematics, a one-dimensional array corresponds to a vector, a two-dimensional array resembles a matrix; more generally, a tensor may be represented as an n-dimensional data cube. For a time sequence of color images, the array is generally four-dimensional, with the dimensions representing image X and Y coordinates, time, and RGB (or other color space) color plane. For example, the EarthServer initiative unites data centers from different continents offering 3-D x/y/t satellite image timeseries and 4-D x/y/z/t weather data for retrieval and server-side processing through the Open Geospatial Consortium WCPS geo datacube query language standard. A data cube is also used in the field of imaging spectroscopy, since a spectrally-resolved image is represented as a three-dimensional volume. In Online analytical processing (OLAP), data cubes are a common arrangement of business data suitable for analysis from different perspectives through operations like slicing, dicing, pivoting, and aggregation.
Views: 5461 The Audiopedia
Data warehouse & mining 9 Data mart (data warehouse models) lecture|tutorial|sanjaypathakjec
 
08:43
Data warehouse & mining 9 Data mart (data warehouse models) lecture|tutorial|sanjaypathakjec
Views: 5539 Sanjay Pathak
What is DATA MINING? What does DATA MINING mean? DATA MINING meaning, definition & explanation
 
03:43
What is DATA MINING? What does DATA MINING mean? DATA MINING meaning - DATA MINING definition - DATA MINING explanation. Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/by-sa/3.0/ license. Data mining is an interdisciplinary subfield of computer science. It is the computational process of discovering patterns in large data sets involving methods at the intersection of artificial intelligence, machine learning, statistics, and database systems. The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use. Aside from the raw analysis step, it involves database and data management aspects, data pre-processing, model and inference considerations, interestingness metrics, complexity considerations, post-processing of discovered structures, visualization, and online updating. Data mining is the analysis step of the "knowledge discovery in databases" process, or KDD. The term is a misnomer, because the goal is the extraction of patterns and knowledge from large amounts of data, not the extraction (mining) of data itself. It also is a buzzword and is frequently applied to any form of large-scale data or information processing (collection, extraction, warehousing, analysis, and statistics) as well as any application of computer decision support system, including artificial intelligence, machine learning, and business intelligence. The book Data mining: Practical machine learning tools and techniques with Java (which covers mostly machine learning material) was originally to be named just Practical machine learning, and the term data mining was only added for marketing reasons. Often the more general terms (large scale) data analysis and analytics – or, when referring to actual methods, artificial intelligence and machine learning – are more appropriate. The actual data mining task is the automatic or semi-automatic analysis of large quantities of data to extract previously unknown, interesting patterns such as groups of data records (cluster analysis), unusual records (anomaly detection), and dependencies (association rule mining). This usually involves using database techniques such as spatial indices. These patterns can then be seen as a kind of summary of the input data, and may be used in further analysis or, for example, in machine learning and predictive analytics. For example, the data mining step might identify multiple groups in the data, which can then be used to obtain more accurate prediction results by a decision support system. Neither the data collection, data preparation, nor result interpretation and reporting is part of the data mining step, but do belong to the overall KDD process as additional steps. The related terms data dredging, data fishing, and data snooping refer to the use of data mining methods to sample parts of a larger population data set that are (or may be) too small for reliable statistical inferences to be made about the validity of any patterns discovered. These methods can, however, be used in creating new hypotheses to test against the larger data populations.
Views: 8204 The Audiopedia
Data Mining using the Excel Data Mining Addin
 
08:16
The Excel Data Mining Addin can be used to build predictive models such as Decisions Trees within Excel. The Excel Data Mining Addin sends data to SQL Server Analysis Services (SSAS) where the models are built. The completed model is then rendered within Excel. I also have a comprehensive 60 minute T-SQL course available at Udemy : https://www.udemy.com/t-sql-for-data-analysts/?couponCode=ANALYTICS50%25OFF
Views: 75128 Steve Fox
OLAP Servers ll ROLAP, MOLAP, HOLAP Explained In Hindi
 
05:25
ROLAP MOLAP HOLAP These OLAP SERVERS are explained in this video 📚📚📚📚📚📚📚📚 GOOD NEWS FOR COMPUTER ENGINEERS INTRODUCING 5 MINUTES ENGINEERING 🎓🎓🎓🎓🎓🎓🎓🎓 SUBJECT :- Artificial Intelligence(AI) Database Management System(DBMS) Software Modeling and Designing(SMD) Software Engineering and Project Planning(SEPM) Data mining and Warehouse(DMW) Data analytics(DA) Mobile Communication(MC) Computer networks(CN) High performance Computing(HPC) Operating system System programming (SPOS) Web technology(WT) Internet of things(IOT) Design and analysis of algorithm(DAA) 💡💡💡💡💡💡💡💡 EACH AND EVERY TOPIC OF EACH AND EVERY SUBJECT (MENTIONED ABOVE) IN COMPUTER ENGINEERING LIFE IS EXPLAINED IN JUST 5 MINUTES. 💡💡💡💡💡💡💡💡 THE EASIEST EXPLANATION EVER ON EVERY ENGINEERING SUBJECT IN JUST 5 MINUTES. 🙏🙏🙏🙏🙏🙏🙏🙏 YOU JUST NEED TO DO 3 MAGICAL THINGS LIKE SHARE & SUBSCRIBE TO MY YOUTUBE CHANNEL 5 MINUTES ENGINEERING
Views: 38887 5 Minutes Engineering
Ensemble Learning, Bootstrap Aggregating (Bagging) and Boosting
 
06:32
#EnsembleLearning #EnsembleModels #MachineLearning #DataAnalytics #DataScience Ensemble Learning is using multiple learning algorithms at a time, to obtain predictions with an aim to have better predictions than the individual models. Ensemble learning is a very popular method to improve the accuracy of a machine learning model. It avoid overfitting and gives us a much better model. bootstrap aggregating (Bagging) and boosting are popular ensemble methods. In the next tutorial we will implement some ensemble models in scikit learn. For all Ipython notebooks, used in this series : https://github.com/shreyans29/thesemicolon Facebook : https://www.facebook.com/thesemicolon.code Support us on Patreon : https://www.patreon.com/thesemicolon
Views: 38852 The Semicolon
Data Mining Lecture -- Bayesian Classification | Naive Bayes Classifier | Solved Example (Eng-Hindi)
 
09:02
In the bayesian classification The final ans doesn't matter in the calculation Because there is no need of value for the decision you have to simply identify which one is greater and therefore you can find the final result. -~-~~-~~~-~~-~- Please watch: "PL vs FOL | Artificial Intelligence | (Eng-Hindi) | #3" https://www.youtube.com/watch?v=GS3HKR6CV8E -~-~~-~~~-~~-~-
Views: 201116 Well Academy
What is Dimension and Fact in Data Warehouse
 
05:16
Dimension and fact are basic building blocks in Data Warehouse. In this tutorial, we will understand what is dimension and fact and what differentiates any data into these two categories.
Views: 51081 aroundBI
R tutorial: What is text mining?
 
03:59
Learn more about text mining: https://www.datacamp.com/courses/intro-to-text-mining-bag-of-words Hi, I'm Ted. I'm the instructor for this intro text mining course. Let's kick things off by defining text mining and quickly covering two text mining approaches. Academic text mining definitions are long, but I prefer a more practical approach. So text mining is simply the process of distilling actionable insights from text. Here we have a satellite image of San Diego overlaid with social media pictures and traffic information for the roads. It is simply too much information to help you navigate around town. This is like a bunch of text that you couldn’t possibly read and organize quickly, like a million tweets or the entire works of Shakespeare. You’re drinking from a firehose! So in this example if you need directions to get around San Diego, you need to reduce the information in the map. Text mining works in the same way. You can text mine a bunch of tweets or of all of Shakespeare to reduce the information just like this map. Reducing the information helps you navigate and draw out the important features. This is a text mining workflow. After defining your problem statement you transition from an unorganized state to an organized state, finally reaching an insight. In chapter 4, you'll use this in a case study comparing google and amazon. The text mining workflow can be broken up into 6 distinct components. Each step is important and helps to ensure you have a smooth transition from an unorganized state to an organized state. This helps you stay organized and increases your chances of a meaningful output. The first step involves problem definition. This lays the foundation for your text mining project. Next is defining the text you will use as your data. As with any analytical project it is important to understand the medium and data integrity because these can effect outcomes. Next you organize the text, maybe by author or chronologically. Step 4 is feature extraction. This can be calculating sentiment or in our case extracting word tokens into various matrices. Step 5 is to perform some analysis. This course will help show you some basic analytical methods that can be applied to text. Lastly, step 6 is the one in which you hopefully answer your problem questions, reach an insight or conclusion, or in the case of predictive modeling produce an output. Now let’s learn about two approaches to text mining. The first is semantic parsing based on word syntax. In semantic parsing you care about word type and order. This method creates a lot of features to study. For example a single word can be tagged as part of a sentence, then a noun and also a proper noun or named entity. So that single word has three features associated with it. This effect makes semantic parsing "feature rich". To do the tagging, semantic parsing follows a tree structure to continually break up the text. In contrast, the bag of words method doesn’t care about word type or order. Here, words are just attributes of the document. In this example we parse the sentence "Steph Curry missed a tough shot". In the semantic example you see how words are broken down from the sentence, to noun and verb phrases and ultimately into unique attributes. Bag of words treats each term as just a single token in the sentence no matter the type or order. For this introductory course, we’ll focus on bag of words, but will cover more advanced methods in later courses! Let’s get a quick taste of text mining!
Views: 28196 DataCamp
Model Evaluation : ROC Curve, Confusion Matrix, Accuracy Ratio | Data Science
 
27:01
In this video you will learn about the different performance matrix used for model evaludation such as Receiver Operating Charateristics, Confusion matrix, Accuracy. This is used very well in evauating classfication models like deicision tree, Logistic regression, SVM ANalytics Study Pack : https://analyticuniversity.com Analytics University on Twitter : https://twitter.com/AnalyticsUniver Analytics University on Facebook : https://www.facebook.com/AnalyticsUniversity Logistic Regression in R: https://goo.gl/S7DkRy Logistic Regression in SAS: https://goo.gl/S7DkRy Logistic Regression Theory: https://goo.gl/PbGv1h Time Series Theory : https://goo.gl/54vaDk Time ARIMA Model in R : https://goo.gl/UcPNWx Survival Model : https://goo.gl/nz5kgu Data Science Career : https://goo.gl/Ca9z6r Machine Learning : https://goo.gl/giqqmx Data Science Case Study : https://goo.gl/KzY5Iu Big Data & Hadoop & Spark: https://goo.gl/ZTmHOA
Views: 20080 Big Edu
Data Mining Lecture -- Decision Tree | Solved Example (Eng-Hindi)
 
29:13
-~-~~-~~~-~~-~- Please watch: "PL vs FOL | Artificial Intelligence | (Eng-Hindi) | #3" https://www.youtube.com/watch?v=GS3HKR6CV8E -~-~~-~~~-~~-~-
Views: 207827 Well Academy
what is  Olap operation in hindi
 
08:07
Take the Full Course of Datawarehouse What we Provide 1)22 Videos (Index is given down) + Update will be Coming Before final exams 2)Hand made Notes with problems for your to practice 3)Strategy to Score Good Marks in DWM To buy the course click here: https://lastmomenttuitions.com/course/data-warehouse/ or [email protected] Index Introduction to Datawarehouse Meta data in 5 mins Datamart in datawarehouse Architecture of datawarehouse how to draw star schema slowflake schema and fact constelation what is Olap operation OLAP vs OLTP decision tree with solved example K mean clustering algorithm Introduction to data mining and architecture Naive bayes classifier Apriori Algorithm Agglomerative clustering algorithmn KDD in data mining ETL process FP TREE Algorithm Decision tree
Views: 150229 Last moment tuitions
QIWare - One Click Data Mining
 
01:54
Explainer video for the "Quick Insights Ware", an innovative data mining solution, that cuts time and costs in building business-driven analytics models such as customer segmentation, churn prediction and next best activity. QIWare by Forte Wares is a rapid analytics solution that unites the power of ETL with data mining. Designed with the adaptability to suit companies in a broad range of industries, QIWare expedites and simplifies the process of preparing data for analysis. Automating the end-to-end process, QIWare further delivers interactive, agile tools to help users when mining prepared data. BENEFITS • Cost-efficient, all-in-one analytics solution • Increased efficiency and business relevance when building analytical models • Drastically reduced data preparation time for modeling • Mitigated chance of human error FEATURES • Business-driven model development paradigm • Fully integrated and searchable data and model dictionaries • Improved data organization using a systematized task-oriented approach • In-DB processes and DB-based performance & scalability • Automated dependency tracking from data sources to model scores
Views: 469 Forte Wares
Data Mining Lecture -- Rule - Based Classification (Eng-Hindi)
 
03:29
-~-~~-~~~-~~-~- Please watch: "PL vs FOL | Artificial Intelligence | (Eng-Hindi) | #3" https://www.youtube.com/watch?v=GS3HKR6CV8E -~-~~-~~~-~~-~-
Views: 42628 Well Academy
Difference between Classification and Regression - Georgia Tech - Machine Learning
 
03:29
Watch on Udacity: https://www.udacity.com/course/viewer#!/c-ud262/l-313488098/m-674518790 Check out the full Advanced Operating Systems course for free at: https://www.udacity.com/course/ud262 Georgia Tech online Master's program: https://www.udacity.com/georgia-tech
Views: 81529 Udacity
What is ANOMALY DETECTION? What does ANOMALY DETECTION mean? ANOMALY DETECTION meaning
 
02:18
What is ANOMALY DETECTION? What does ANOMALY DETECTION mean? ANOMALY DETECTION meaning - ANOMALY DETECTION definition - ANOMALY DETECTION explanation. Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/by-sa/3.0/ license. In data mining, anomaly detection (also outlier detection) is the identification of items, events or observations which do not conform to an expected pattern or other items in a dataset.[1] Typically the anomalous items will translate to some kind of problem such as bank fraud, a structural defect, medical problems or errors in a text. Anomalies are also referred to as outliers, novelties, noise, deviations and exceptions.[2] In particular in the context of abuse and network intrusion detection, the interesting objects are often not rare objects, but unexpected bursts in activity. This pattern does not adhere to the common statistical definition of an outlier as a rare object, and many outlier detection methods (in particular unsupervised methods) will fail on such data, unless it has been aggregated appropriately. Instead, a cluster analysis algorithm may be able to detect the micro clusters formed by these patterns.[3] Three broad categories of anomaly detection techniques exist.[1] Unsupervised anomaly detection techniques detect anomalies in an unlabeled test data set under the assumption that the majority of the instances in the data set are normal by looking for instances that seem to fit least to the remainder of the data set. Supervised anomaly detection techniques require a data set that has been labeled as "normal" and "abnormal" and involves training a classifier (the key difference to many other statistical classification problems is the inherent unbalanced nature of outlier detection). Semi-supervised anomaly detection techniques construct a model representing normal behavior from a given normal training data set, and then testing the likelihood of a test instance to be generated by the learnt model.
Views: 6915 The Audiopedia
Support Vector Machine (SVM) - Fun and Easy Machine Learning
 
07:28
Support Vector Machine (SVM) - Fun and Easy Machine Learning ►FREE YOLO GIFT - http://augmentedstartups.info/yolofreegiftsp ►KERAS COURSE - https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML ►MACHINE LEARNING COURSES -http://augmentedstartups.info/machine-learning-courses ------------------------------------------------------------------------ A Support Vector Machine (SVM) is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data (supervised learning), the algorithm outputs an optimal hyperplane which categorizes new examples. To understand SVM’s a bit better, Lets first take a look at why they are called support vector machines. So say we got some sample data over here of features that classify whether a observed picture is a dog or a cat, so we can for example look at snout length or and ear geometry if we assume that dogs generally have longer snouts and cat have much more pointy ear shapes. So how do we decide where to draw our decision boundary? Well we can draw it over here or here or like this. Any of these would be fine, but what would be the best? If we do not have the optimal decision boundary we could incorrectly mis-classify a dog with a cat. So if we draw an arbitrary separation line and we use intuition to draw it somewhere between this data point for the dog class and this data point of the cat class. These points are known as support Vectors – Which are defined as data points that the margin pushes up against or points that are closest to the opposing class. So the algorithm basically implies that only support vector are important whereas other training examples are ‘ignorable’. An example of this is so that if you have our case of a dog that looks like a cat or cat that is groomed like a dog, we want our classifier to look at these extremes and set our margins based on these support vectors. ------------------------------------------------------------ Support us on Patreon ►AugmentedStartups.info/Patreon Chat to us on Discord ►AugmentedStartups.info/discord Interact with us on Facebook ►AugmentedStartups.info/Facebook Check my latest work on Instagram ►AugmentedStartups.info/instagram Learn Advanced Tutorials on Udemy ►AugmentedStartups.info/udemy ------------------------------------------------------------ To learn more on Artificial Intelligence, Augmented Reality IoT, Deep Learning FPGAs, Arduinos, PCB Design and Image Processing then check out http://augmentedstartups.info/home Please Like and Subscribe for more videos :)
Views: 210991 Augmented Startups
L2: Data Warehousing and Data Mining |Enterprise data Warehousing|Data mart|Warehousing Terminology
 
11:38
Join My official Whatsapp group by following link https://chat.whatsapp.com/F9XFi6QYFYOGA9JGw4gc1o L2: Data Warehousing and Data Mining |Enterprise data Warehousing|Data mart|Warehousing Terminology Namaskar, In the Today's lecture i will cover Introduction to Data Warehousing and Data Mining of subject Data Warehousing and Data Mining which is one of the important subject of computer science and engineering Syllabus Unit1: Data Warehousing: Overview, Definition, Data Warehousing Components, Building a Data Warehouse, Warehouse Database, Mapping the Data Warehouse to a Multiprocessor Architecture, Difference between Database System and Data Warehouse, Multi Dimensional Data Model, Data Cubes, Stars, Snow Flakes, Fact Constellations, Concept. Unit 2: Data Warehouse Process and Technology: Warehousing Strategy, Warehouse /management and Support Processes, Warehouse Planning and Implementation, Hardware and Operating Systems for Data Warehousing, Client/Server Computing Model & Data Warehousing. Parallel Processors & Cluster Systems, Distributed DBMS implementations, Warehousing Software, Warehouse Schema Design. Unit 3: Data Mining: Overview, Motivation, Definition & Functionalities, Data Processing, Form of Data Pre-processing, Data Cleaning: Missing Values, Noisy Data, (Binning, Clustering, Regression, Computer and Human inspection), Inconsistent Data, Data Integration and Transformation. Data Reduction:-Data Cube Aggregation, Dimensionality reduction, Data Compression, Numerosity Reduction, Discretization and Concept hierarchy generation, Decision Tree. Unit 4: Classification: Definition, Data Generalization, Analytical Characterization, Analysis of attribute relevance, Mining Class comparisons, Statistical measures in large Databases, Statistical-Based Algorithms, Distance-Based Algorithms, Decision Tree-Based Algorithms. Clustering: Introduction, Similarity and Distance Measures, Hierarchical and Partitional Algorithms. Hierarchical Clustering- CURE and Chameleon. Density Based Methods-DBSCAN, OPTICS. Grid Based Methods- STING, CLIQUE. Model Based Method –Statistical Approach, Association rules: Introduction, Large Item sets, Basic Algorithms, Parallel and Distributed Algorithms, Neural Network approach. Unit 5: Data Visualization and Overall Perspective: Aggregation, Historical information, Query Facility, OLAP function and Tools. OLAP Servers, ROLAP, MOLAP, HOLAP, Data Mining interface, Security, Backup and Recovery, Tuning Data Warehouse, Testing Data Warehouse. Warehousing applications and Recent Trends: Types of Warehousing Applications, Web Mining, Spatial Mining and Temporal Mining I am Sandeep Vishwakarma (www.universityacademy.in) from Raj Kumar Goel Institute of Technology Ghaziabad. I have started a YouTube Channel Namely “University Academy” Teaching Training and Informative. On This channel am providing following services. 1 . Teaching: Video Lecture of B.Tech./ M.Tech. Technical Subject who provide you deep knowledge of particular subject. Compiler Design: https://www.youtube.com/playlist?list=PL-JvKqQx2Ate5DWhppx-MUOtGNA4S3spT Principle of Programming Language: https://www.youtube.com/playlist?list=PL-JvKqQx2AtdIkEFDrqsHyKWzb5PWniI1 Theory of Automata and Formal Language: https://www.youtube.com/playlist?list=PL-JvKqQx2AtdhlS7j6jFoEnxmUEEsH9KH 2. Training: Video Playlist of Some software course like Android, Hadoop, Big Data, IoT, R programming, Python, C programming, Java etc. Android App Development: https://www.youtube.com/playlist?list=PL-JvKqQx2AtdBj8aS-3WCVgfQ3LJFiqIr 3. Informative: On this Section we provide video on deep knowledge of upcoming technology, Innovation, tech news and other informative. Tech News: https://www.youtube.com/playlist?list=PL-JvKqQx2AtdFG5kMueyK5DZvGzG615ks Other: https://www.youtube.com/playlist?list=PL-JvKqQx2AtfQWfBddeH_zVp2fK4V5orf Download You Can Download All Video Lecture, Lecture Notes, Lab Manuals and Many More from my Website: http://www.universityacademy.in/ Regards University Academy UniversityAcademy Website: http://www.universityacademy.in/ YouTube: https://www.youtube.com/c/UniversityAcademy Facebook: https://www.facebook.com/UniversityAcademyOfficial Twitter https://twitter.com/UniAcadofficial Instagram https://www.instagram.com/universityacademyofficial Google+: https://plus.google.com/+UniversityAcademy
Views: 1045 University Academy
Random Forest - Fun and Easy Machine Learning
 
07:38
Random Forest - Fun and Easy Machine Learning ►FREE YOLO GIFT - http://augmentedstartups.info/yolofreegiftsp ►KERAS COURSE - https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML ►MACHINE LEARNING COURSES -http://augmentedstartups.info/machine-learning-courses ------------------------------------------------------------------------ Hey Guys, and welcome to another Fun and Easy Machine Learning Algorithm on Random Forests. Random forest algorithm is a one of the most popular and most powerful supervised Machine Learning algorithm in Machine Learning that is capable of performing both regression and classification tasks. As the name suggest, this algorithm creates the forest with a number of decision trees. In general, the more trees in the forest the more robust the prediction. In the same way in the random forest classifier, the higher the number of trees in the forest gives the high accuracy results. To model multiple decision trees to create the forest you are not going to use the same method of constructing the decision with information gain or gini index approach, amongst other algorithms. If you are not aware of the concepts of decision tree classifier, Please check out my lecture here on Decision Tree CART for Machine learning. You will need to know how the decision tree classifier works before you can learn the working nature of the random forest algorithm. ------------------------------------------------------------ Support us on Patreon ►AugmentedStartups.info/Patreon Chat to us on Discord ►AugmentedStartups.info/discord Interact with us on Facebook ►AugmentedStartups.info/Facebook Check my latest work on Instagram ►AugmentedStartups.info/instagram Learn Advanced Tutorials on Udemy ►AugmentedStartups.info/udemy ------------------------------------------------------------ To learn more on Artificial Intelligence, Augmented Reality IoT, Deep Learning FPGAs, Arduinos, PCB Design and Image Processing then check out http://augmentedstartups.info/home Please Like and Subscribe for more videos :)
Views: 236576 Augmented Startups
L1: Data Warehousing and Data Mining |Introduction to Warehousing| What is Mining| Tutorial in Hindi
 
11:35
Join My official Whatsapp group by following link https://chat.whatsapp.com/F9XFi6QYFYOGA9JGw4gc1o L1: Data Warehousing and Data Mining | What is Warehousing| What is Mining| Tutorial in Hindi Namaskar, In the Today's lecture i will cover Introduction to Data Warehousing and Data Mining of subject Data Warehousing and Data Mining which is one of the important subject of computer science and engineering Syllabus Unit1: Data Warehousing: Overview, Definition, Data Warehousing Components, Building a Data Warehouse, Warehouse Database, Mapping the Data Warehouse to a Multiprocessor Architecture, Difference between Database System and Data Warehouse, Multi Dimensional Data Model, Data Cubes, Stars, Snow Flakes, Fact Constellations, Concept. Unit 2: Data Warehouse Process and Technology: Warehousing Strategy, Warehouse /management and Support Processes, Warehouse Planning and Implementation, Hardware and Operating Systems for Data Warehousing, Client/Server Computing Model & Data Warehousing. Parallel Processors & Cluster Systems, Distributed DBMS implementations, Warehousing Software, Warehouse Schema Design. Unit 3: Data Mining: Overview, Motivation, Definition & Functionalities, Data Processing, Form of Data Pre-processing, Data Cleaning: Missing Values, Noisy Data, (Binning, Clustering, Regression, Computer and Human inspection), Inconsistent Data, Data Integration and Transformation. Data Reduction:-Data Cube Aggregation, Dimensionality reduction, Data Compression, Numerosity Reduction, Discretization and Concept hierarchy generation, Decision Tree. Unit 4: Classification: Definition, Data Generalization, Analytical Characterization, Analysis of attribute relevance, Mining Class comparisons, Statistical measures in large Databases, Statistical-Based Algorithms, Distance-Based Algorithms, Decision Tree-Based Algorithms. Clustering: Introduction, Similarity and Distance Measures, Hierarchical and Partitional Algorithms. Hierarchical Clustering- CURE and Chameleon. Density Based Methods-DBSCAN, OPTICS. Grid Based Methods- STING, CLIQUE. Model Based Method –Statistical Approach, Association rules: Introduction, Large Item sets, Basic Algorithms, Parallel and Distributed Algorithms, Neural Network approach. Unit 5: Data Visualization and Overall Perspective: Aggregation, Historical information, Query Facility, OLAP function and Tools. OLAP Servers, ROLAP, MOLAP, HOLAP, Data Mining interface, Security, Backup and Recovery, Tuning Data Warehouse, Testing Data Warehouse. Warehousing applications and Recent Trends: Types of Warehousing Applications, Web Mining, Spatial Mining and Temporal Mining I am Sandeep Vishwakarma (www.universityacademy.in) from Raj Kumar Goel Institute of Technology Ghaziabad. I have started a YouTube Channel Namely “University Academy” Teaching Training and Informative. On This channel am providing following services. 1 . Teaching: Video Lecture of B.Tech./ M.Tech. Technical Subject who provide you deep knowledge of particular subject. Compiler Design: https://www.youtube.com/playlist?list=PL-JvKqQx2Ate5DWhppx-MUOtGNA4S3spT Principle of Programming Language: https://www.youtube.com/playlist?list=PL-JvKqQx2AtdIkEFDrqsHyKWzb5PWniI1 Theory of Automata and Formal Language: https://www.youtube.com/playlist?list=PL-JvKqQx2AtdhlS7j6jFoEnxmUEEsH9KH 2. Training: Video Playlist of Some software course like Android, Hadoop, Big Data, IoT, R programming, Python, C programming, Java etc. Android App Development: https://www.youtube.com/playlist?list=PL-JvKqQx2AtdBj8aS-3WCVgfQ3LJFiqIr 3. Informative: On this Section we provide video on deep knowledge of upcoming technology, Innovation, tech news and other informative. Tech News: https://www.youtube.com/playlist?list=PL-JvKqQx2AtdFG5kMueyK5DZvGzG615ks Other: https://www.youtube.com/playlist?list=PL-JvKqQx2AtfQWfBddeH_zVp2fK4V5orf Download You Can Download All Video Lecture, Lecture Notes, Lab Manuals and Many More from my Website: http://www.universityacademy.in/ Regards University Academy UniversityAcademy Website: http://www.universityacademy.in/ YouTube: https://www.youtube.com/c/UniversityAcademy Facebook: https://www.facebook.com/UniversityAcademyOfficial Twitter https://twitter.com/UniAcadofficial Instagram https://www.instagram.com/universityacademyofficial Google+: https://plus.google.com/+UniversityAcademy
Views: 2329 University Academy
Knowledge Discovery From Data (KDD) Process (HINDI)
 
04:06
Hello dosto mera naam hai shridhar mankar aur mein aap Sabka Swagat karta hu 5-minutes engineering channel pe. This channel is launched with a aim to enhance the quality of knowledge of engineering,here I am going to introduce you to every subject of computer engineering like artificial intelligence database management system software modeling and designing Software engineering and project planning data mining and warehouse data analytics Mobile communication Mobile computing Computer networks high performance computing parallel computing Operating system Software programming SPOS web technology internet of things design and analysis of algorithm
Views: 38448 5 Minutes Engineering
What is OLAP?
 
05:05
This video explores some of OLAP's history, and where this solution might be applicable. We also look at situations where OLAP might not be a fit. Additionally, we investigate an alternative/complement called a Relational Dimensional Model. To Talk with a Specialist go to: http://www.intricity.com/intricity101/ www.intricity.com
Views: 378776 Intricity101
Decision Tree with Solved Example in English | DWM | ML | BDA
 
21:21
Take the Full Course of Artificial Intelligence What we Provide 1) 28 Videos (Index is given down) 2)Hand made Notes with problems for your to practice 3)Strategy to Score Good Marks in Artificial Intelligence Sample Notes : https://goo.gl/aZtqjh To buy the course click https://goo.gl/H5QdDU if you have any query related to buying the course feel free to email us : [email protected] Other free Courses Available : Python : https://goo.gl/2gftZ3 SQL : https://goo.gl/VXR5GX Arduino : https://goo.gl/fG5eqk Raspberry pie : https://goo.gl/1XMPxt Artificial Intelligence Index 1)Agent and Peas Description 2)Types of agent 3)Learning Agent 4)Breadth first search 5)Depth first search 6)Iterative depth first search 7)Hill climbing 8)Min max 9)Alpha beta pruning 10)A* sums 11)Genetic Algorithm 12)Genetic Algorithm MAXONE Example 13)Propsotional Logic 14)PL to CNF basics 15) First order logic solved Example 16)Resolution tree sum part 1 17)Resolution tree Sum part 2 18)Decision tree( ID3) 19)Expert system 20) WUMPUS World 21)Natural Language Processing 22) Bayesian belief Network toothache and Cavity sum 23) Supervised and Unsupervised Learning 24) Hill Climbing Algorithm 26) Heuristic Function (Block world + 8 puzzle ) 27) Partial Order Planing 28) GBFS Solved Example
Views: 283733 Last moment tuitions
WDM 1:What is Data Mining
 
08:10
Introduction to Data Mining For Full Course Experience Please Go To http://mentorsnet.org/course_preview?course_id=1 Full Course Experience Includes 1. Access to course videos and exercises 2. View & manage your progress/pace 3. In-class projects and code reviews 4. Personal guidance from your Mentors
Views: 44639 Oresoft LWC
Naive Bayes Theorem | Introduction to Naive Bayes Theorem | Machine Learning Classification
 
09:50
Naive Bayes is a machine learning algorithm for classification problems. It is based on Bayes’ probability theorem. It is primarily used for text classification which involves high dimensional training data sets. A few examples are spam filtration, sentimental analysis, and classifying news articles. It is not only known for its simplicity, but also for its effectiveness. It is fast to build models and make predictions with Naive Bayes algorithm. Naive Bayes is the first algorithm that should be considered for solving text classification problem. Hence, you should learn this algorithm thoroughly. This video will talk about below: 1. Machine Learning Classification 2. Naive Bayes Theorem About us: HackerEarth is the most comprehensive developer assessment software that helps companies to accurately measure the skills of developers during the recruiting process. More than 500 companies across the globe use HackerEarth to improve the quality of their engineering hires and reduce the time spent by recruiters on screening candidates. Over the years, we have also built a thriving community of 2.5M+ developers that come to HackerEarth to participate in hackathons and coding challenges to assess their skills and compete in the community.
Views: 102735 HackerEarth
Using Lift (Accuracy/Gains) Charts to Evaluate Data Mining Models in SQL Server 2008
 
06:54
Lift Charts are used to evaluate & compare the strength of predictive models. This tutorial uses a lift chart to compare a Neural Network & a Decision Tree model created in a previous video (http://www.analyticsinaction.com/creating-data-mining-structures-predictive-models-using-the-excel-add-in-for-sql-server-2008/) . I also have a comprehensive 60 minute T-SQL course available at Udemy : https://www.udemy.com/t-sql-for-data-analysts/?couponCode=ANALYTICS50%25OFF
Views: 4446 Steve Fox
How kNN algorithm works
 
04:42
In this video I describe how the k Nearest Neighbors algorithm works, and provide a simple example using 2-dimensional data and k = 3. This presentation is available at: http://prezi.com/ukps8hzjizqw/?utm_campaign=share&utm_medium=copy
Views: 443909 Thales Sehn Körting
What is Random Forest Algorithm? A graphical tutorial on how Random Forest algorithm works?
 
03:49
It Explains Random Forest Method in a very simple and pictorial way --------------------------------- Read in great detail along with Excel output, computation and R code ---------------------------------- https://www.udemy.com/decision-tree-theory-application-and-modeling-using-r/?couponCode=Ad_Try_01
Views: 117952 Gopal Malakar
Handling Class Imbalance Problem in R: Improving Predictive Model Performance
 
23:29
Provides steps for carrying handling class imbalance problem when developing classification and prediction models Download R file: https://goo.gl/ns7zNm data: https://goo.gl/d5JFtq Includes, - What is Class Imbalance Problem? - Data partitioning - Data for developing prediction model - Developing prediction model - Predictive model evaluation - Confusion matrix, - Accuracy, sensitivity, and specificity - Oversampling, undersampling, synthetic sampling using random over sampling examples predictive models are important machine learning and statistical tools related to analyzing big data or working in data science field. R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 16083 Bharatendra Rai