Home
Search results “Example of data mining task”
Data Mining Tasks
 
03:40
Including core tasks
Views: 1729 bade rebecca
data mining task
 
08:44
Views: 4771 Sailaja NV
Data Mining, Classification, Clustering, Association Rules, Regression, Deviation
 
05:01
Complete set of Video Lessons and Notes available only at http://www.studyyaar.com/index.php/module/20-data-warehousing-and-mining Data Mining, Classification, Clustering, Association Rules, Sequential Pattern Discovery, Regression, Deviation http://www.studyyaar.com/index.php/module-video/watch/53-data-mining
Views: 91242 StudyYaar.com
data mining techniques
 
14:00
This video describes data mining tasks or techniques in brief. Each technique requires a separate explanation as well. #datamining #techniques #weka Data mining tutorial in hindi Weka tutorial in hindi Data mining tutorial
Views: 9634 yaachana bhawsar
Data Mining Classification and Prediction ( in Hindi)
 
05:57
A tutorial about classification and prediction in Data Mining .
Views: 40591 Red Apple Tutorials
Association analysis: Frequent Patterns, Support, Confidence and Association Rules
 
19:31
This lecture provides the introductory concepts of Frequent pattern mining in transnational databases.
Views: 66419 StudyKorner
DM3 Data Mining Tasks مهام التنقيب عن البيانات
 
04:27
أ.محمود رفيق الفرا مختصر مساق التنقيب عن البيانات Data Mining
Views: 4741 MahmoudRFarra
Difference between Classification and Regression - Georgia Tech - Machine Learning
 
03:29
Watch on Udacity: https://www.udacity.com/course/viewer#!/c-ud262/l-313488098/m-674518790 Check out the full Advanced Operating Systems course for free at: https://www.udacity.com/course/ud262 Georgia Tech online Master's program: https://www.udacity.com/georgia-tech
Views: 82002 Udacity
Data Mining & Business Intelligence | Tutorial #4 | Forms Of Data Preprocessing
 
09:49
Order my books at 👉 http://www.tek97.com/ #RanjiRaj #DataMining #DataPreprocessing Its important to preprocess the data before processing. Have a look at different forms of data preprocessing in data mining. Watch now ! Il est important de prétraiter les données avant le traitement. Jetez un oeil à différentes formes de prétraitement des données dans l'exploration de données. Regarde maintenant ! Es ist wichtig, die Daten vor der Verarbeitung vorzuverarbeiten. Sehen Sie sich verschiedene Formen der Datenvorverarbeitung im Data Mining an. Schau jetzt ! Es importante preprocesar los datos antes del procesamiento. Eche un vistazo a las diferentes formas de preprocesamiento de datos en la minería de datos. Ver ahora ! من المهم أن preprocess البيانات قبل المعالجة. إلقاء نظرة على أشكال مختلفة من معالجة البيانات في تعدين البيانات. شاهد الآن ! ⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐ Add me on Facebook 👉https://www.facebook.com/renji.nair.09 Follow me on Twitter👉https://twitter.com/iamRanjiRaj Read my Story👉https://www.linkedin.com/pulse/engineering-my-quadrennial-trek-ranji-raj-nair Visit my Profile👉https://www.linkedin.com/in/reng99/ Like TheStudyBeast on Facebook👉https://www.facebook.com/thestudybeast/ ⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐ For more such videos LIKE SHARE SUBSCRIBE Iphone 6s : http://amzn.to/2eyU8zi Gorilla Pod : http://amzn.to/2gAdVPq White Board : http://amzn.to/2euGJ7F Duster : http://amzn.to/2ev0qvX Feltip Markers : http://amzn.to/2eutbZC
Views: 9468 Ranji Raj
Introduction to data mining and architecture  in hindi
 
09:51
#datamining #datawarehouse #lastmomenttuitions Take the Full Course of Datawarehouse What we Provide 1)22 Videos (Index is given down) + Update will be Coming Before final exams 2)Hand made Notes with problems for your to practice 3)Strategy to Score Good Marks in DWM To buy the course click here: https://lastmomenttuitions.com/course/data-warehouse/ Buy the Notes https://lastmomenttuitions.com/course/data-warehouse-and-data-mining-notes/ if you have any query email us at [email protected] Index Introduction to Datawarehouse Meta data in 5 mins Datamart in datawarehouse Architecture of datawarehouse how to draw star schema slowflake schema and fact constelation what is Olap operation OLAP vs OLTP decision tree with solved example K mean clustering algorithm Introduction to data mining and architecture Naive bayes classifier Apriori Algorithm Agglomerative clustering algorithmn KDD in data mining ETL process FP TREE Algorithm Decision tree
Views: 262035 Last moment tuitions
DM Chapter 4
 
08:04
Data Mining Primitives
Views: 2663 Dr.Anamika Bhargava
DATA MINING ISSUES
 
10:44
Views: 1736 Menuja Jeganathan
APPLICATIONS OF DATA MINING
 
06:31
APPLICATIONS OF DATA MINING
Views: 2452 Samuel Hemandro
Data Mining - Clustering
 
06:52
What is clustering Partitioning a data into subclasses. Grouping similar objects. Partitioning the data based on similarity. Eg:Library. Clustering Types Partitioning Method Hierarchical Method Agglomerative Method Divisive Method Density Based Method Model based Method Constraint based Method These are clustering Methods or types. Clustering Algorithms,Clustering Applications and Examples are also Explained.
KDD ( knowledge data discovery )  in data mining in hindi
 
08:50
#kdd #datawarehouse #datamining #lastmomenttuitions Take the Full Course of Datawarehouse What we Provide 1)22 Videos (Index is given down) + Update will be Coming Before final exams 2)Hand made Notes with problems for your to practice 3)Strategy to Score Good Marks in DWM To buy the course click here: https://lastmomenttuitions.com/course/data-warehouse/ Buy the Notes https://lastmomenttuitions.com/course/data-warehouse-and-data-mining-notes/ if you have any query email us at [email protected] Index Introduction to Datawarehouse Meta data in 5 mins Datamart in datawarehouse Architecture of datawarehouse how to draw star schema slowflake schema and fact constelation what is Olap operation OLAP vs OLTP decision tree with solved example K mean clustering algorithm Introduction to data mining and architecture Naive bayes classifier Apriori Algorithm Agglomerative clustering algorithmn KDD in data mining ETL process FP TREE Algorithm Decision tree
Views: 89181 Last moment tuitions
Data Mining Lecture -- Bayesian Classification | Naive Bayes Classifier | Solved Example (Eng-Hindi)
 
09:02
In the bayesian classification The final ans doesn't matter in the calculation Because there is no need of value for the decision you have to simply identify which one is greater and therefore you can find the final result. -~-~~-~~~-~~-~- Please watch: "PL vs FOL | Artificial Intelligence | (Eng-Hindi) | #3" https://www.youtube.com/watch?v=GS3HKR6CV8E -~-~~-~~~-~~-~-
Views: 207799 Well Academy
How data mining works
 
12:20
Data mining concepts Data mining is the process of discovering patterns in large data sets involving methods at the intersection of machine learning, statistics, and database systems. Data mining is an interdisciplinary subfield of computer science with an overall goal to extract information (with intelligent methods) from a data set and transform the information into a comprehensible structure for further use.Data mining is the analysis step of the "knowledge discovery in databases" process, or KDD. Aside from the raw analysis step, it also involves database and data management aspects, data pre-processing, model and inference considerations, interestingness metrics, complexity considerations, post-processing of discovered structures, visualization, and online updating. The term "data mining" is in fact a misnomer, because the goal is the extraction of patterns and knowledge from large amounts of data, not the extraction (mining) of data itself. It also is a buzzword and is frequently applied to any form of large-scale data or information processing (collection, extraction, warehousing, analysis, and statistics) as well as any application of computer decision support system, including artificial intelligence (e.g., machine learning) and business intelligence. The book Data mining: Practical machine learning tools and techniques with Java[8] (which covers mostly machine learning material) was originally to be named just Practical machine learning, and the term data mining was only added for marketing reasons.[9] Often the more general terms (large scale) data analysis and analytics – or, when referring to actual methods, artificial intelligence and machine learning – are more appropriate. The actual data mining task is the semi-automatic or automatic analysis of large quantities of data to extract previously unknown, interesting patterns such as groups of data records (cluster analysis), unusual records (anomaly detection), and dependencies (association rule mining, sequential pattern mining). This usually involves using database techniques such as spatial indices. These patterns can then be seen as a kind of summary of the input data, and may be used in further analysis or, for example, in machine learning and predictive analytics. For example, the data mining step might identify multiple groups in the data, which can then be used to obtain more accurate prediction results by a decision support system. Neither the data collection, data preparation, nor result interpretation and reporting is part of the data mining step, but do belong to the overall KDD process as additional steps. The related terms data dredging, data fishing, and data snooping refer to the use of data mining methods to sample parts of a larger population data set that are (or may be) too small for reliable statistical inferences to be made about the validity of any patterns discovered. These methods can, however, be used in creating new hypotheses to test against the larger data populations.Data mining Data mining involves six common classes of tasks: Anomaly detection (outlier/change/deviation detection) – The identification of unusual data records, that might be interesting or data errors that require further investigation. Association rule learning (dependency modelling) – Searches for relationships between variables. For example, a supermarket might gather data on customer purchasing habits. Using association rule learning, the supermarket can determine which products are frequently bought together and use this information for marketing purposes. This is sometimes referred to as market basket analysis. Clustering – is the task of discovering groups and structures in the data that are in some way or another "similar", without using known structures in the data. Classification – is the task of generalizing known structure to apply to new data. For example, an e-mail program might attempt to classify an e-mail as "legitimate" or as "spam". Regression – attempts to find a function which models the data with the least error that is, for estimating the relationships among data or datasets. Summarization – providing a more compact representation of the data set, including visualization and report generation.
Views: 640 Technology mart
3 Data Mining Primitives- Data Warehouse and Data Mining
 
59:18
http://www.atozsky.com/ https://www.facebook.com/atozsky.computer/ All credits goes to NIELIT, Delhi INDIA
Views: 995 AtoZ COMPUTER
Map Reduce ll Master Job Tracker and Slave Tracker Explained with Examples in Hindi
 
08:04
📚📚📚📚📚📚📚📚 GOOD NEWS FOR COMPUTER ENGINEERS INTRODUCING 5 MINUTES ENGINEERING 🎓🎓🎓🎓🎓🎓🎓🎓 SUBJECT :- Discrete Mathematics (DM) Theory Of Computation (TOC) Artificial Intelligence(AI) Database Management System(DBMS) Software Modeling and Designing(SMD) Software Engineering and Project Planning(SEPM) Data mining and Warehouse(DMW) Data analytics(DA) Mobile Communication(MC) Computer networks(CN) High performance Computing(HPC) Operating system System programming (SPOS) Web technology(WT) Internet of things(IOT) Design and analysis of algorithm(DAA) 💡💡💡💡💡💡💡💡 EACH AND EVERY TOPIC OF EACH AND EVERY SUBJECT (MENTIONED ABOVE) IN COMPUTER ENGINEERING LIFE IS EXPLAINED IN JUST 5 MINUTES. 💡💡💡💡💡💡💡💡 THE EASIEST EXPLANATION EVER ON EVERY ENGINEERING SUBJECT IN JUST 5 MINUTES. 🙏🙏🙏🙏🙏🙏🙏🙏 YOU JUST NEED TO DO 3 MAGICAL THINGS LIKE SHARE & SUBSCRIBE TO MY YOUTUBE CHANNEL 5 MINUTES ENGINEERING 📚📚📚📚📚📚📚📚
Views: 15650 5 Minutes Engineering
K-Means Clustering Algorithm – Solved Numerical Question 1(Euclidean Distance)(Hindi)
 
12:20
K-Means Clustering Algorithm – Solved Numerical Question 1(Euclidean Distance)(Hindi) Data Warehouse and Data Mining Lectures in Hindi
How to use WEKA software for data mining tasks
 
04:54
In this video, I'll guide you how to use WEKA software for preprocessing, classifying, clustering, association. WEKA is a collection of machine learning algorithms for performing data mining tasks. #RanjiRaj #WEKA #DataMining Follow me on Instagram 👉 https://www.instagram.com/reng_army/ Visit my Profile 👉 https://www.linkedin.com/in/reng99/ Support my work on Patreon 👉 https://www.patreon.com/ranjiraj Get WEKA from here : http://www.cs.waikato.ac.nz/ml/weka/
Views: 20886 Ranji Raj
Data Science for Business: The 9 Most Common Data Mining Tasks
 
07:56
This video highlights the 9 most common data mining methods used in practice. For a related video, watch "Supervised vs. Unsupervised Methods": https://www.youtube.com/watch?v=i3itDGwhLq4 This video was created by Cognitir. Cognitir is a global company that provides live training courses to business & finance professionals globally to help them acquire in-demand tech skills. For additional free resources and information about training courses, please visit: www.cognitir.com
Views: 2812 Cognitir
What is DATA MINING? What does DATA MINING mean? DATA MINING meaning, definition & explanation
 
03:43
What is DATA MINING? What does DATA MINING mean? DATA MINING meaning - DATA MINING definition - DATA MINING explanation. Source: Wikipedia.org article, adapted under https://creativecommons.org/licenses/by-sa/3.0/ license. Data mining is an interdisciplinary subfield of computer science. It is the computational process of discovering patterns in large data sets involving methods at the intersection of artificial intelligence, machine learning, statistics, and database systems. The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use. Aside from the raw analysis step, it involves database and data management aspects, data pre-processing, model and inference considerations, interestingness metrics, complexity considerations, post-processing of discovered structures, visualization, and online updating. Data mining is the analysis step of the "knowledge discovery in databases" process, or KDD. The term is a misnomer, because the goal is the extraction of patterns and knowledge from large amounts of data, not the extraction (mining) of data itself. It also is a buzzword and is frequently applied to any form of large-scale data or information processing (collection, extraction, warehousing, analysis, and statistics) as well as any application of computer decision support system, including artificial intelligence, machine learning, and business intelligence. The book Data mining: Practical machine learning tools and techniques with Java (which covers mostly machine learning material) was originally to be named just Practical machine learning, and the term data mining was only added for marketing reasons. Often the more general terms (large scale) data analysis and analytics – or, when referring to actual methods, artificial intelligence and machine learning – are more appropriate. The actual data mining task is the automatic or semi-automatic analysis of large quantities of data to extract previously unknown, interesting patterns such as groups of data records (cluster analysis), unusual records (anomaly detection), and dependencies (association rule mining). This usually involves using database techniques such as spatial indices. These patterns can then be seen as a kind of summary of the input data, and may be used in further analysis or, for example, in machine learning and predictive analytics. For example, the data mining step might identify multiple groups in the data, which can then be used to obtain more accurate prediction results by a decision support system. Neither the data collection, data preparation, nor result interpretation and reporting is part of the data mining step, but do belong to the overall KDD process as additional steps. The related terms data dredging, data fishing, and data snooping refer to the use of data mining methods to sample parts of a larger population data set that are (or may be) too small for reliable statistical inferences to be made about the validity of any patterns discovered. These methods can, however, be used in creating new hypotheses to test against the larger data populations.
Views: 8242 The Audiopedia
Applying Data Mining Models with  SQL Server Integration Services (SSIS)
 
09:42
SQL Server Integration Services (SSIS) can be used to apply Data Mining predictions. This tutorial demonstrates how to use the SSIS "Data Mining Query" to predictive the risk of having a vehicle using profile information stored in a SQL Server table. I also have a comprehensive 60 minute T-SQL course available at Udemy : https://www.udemy.com/t-sql-for-data-analysts/?couponCode=ANALYTICS50%25OFF
Views: 7930 Steve Fox
Association Rule Mining – Solved Numerical Question on Apriori Algorithm(Hindi)
 
18:02
Association Rule Mining – Solved Numerical Question on Apriori Algorithm(Hindi) DataWarehouse and Data Mining Lectures in Hindi Solved Numerical Problem on Apriori Algorithm Data Mining Algorithm Solved Numerical in Hindi Machine Learning Algorithm Solved Numerical Problems in Hindi
Views: 108417 Easy Engineering Classes
Data Preprocessing
 
07:19
Project Name: Learning by Doing (LBD) based course content development Project Investigator: Prof Sandhya Kode
Views: 39889 Vidya-mitra
apriori algorithm in WEKA
 
07:00
This tutorial is about how to apply apriori algorithm on given data set. This is association rule mining task. #datamining #weka #apriori Data mining in hindi Data mining tutorial Weka tutorial
Views: 3505 yaachana bhawsar
Naive Bayes Classifier ll Data Mining And Warehousing Explained with Solved Example in Hindi
 
10:48
📚📚📚📚📚📚📚📚 GOOD NEWS FOR COMPUTER ENGINEERS INTRODUCING 5 MINUTES ENGINEERING 🎓🎓🎓🎓🎓🎓🎓🎓 SUBJECT :- Theory Of Computation (TOC) Artificial Intelligence(AI) Database Management System(DBMS) Software Modeling and Designing(SMD) Software Engineering and Project Planning(SEPM) Data mining and Warehouse(DMW) Data analytics(DA) Mobile Communication(MC) Computer networks(CN) High performance Computing(HPC) Operating system System programming (SPOS) Web technology(WT) Internet of things(IOT) Design and analysis of algorithm(DAA) 💡💡💡💡💡💡💡💡 EACH AND EVERY TOPIC OF EACH AND EVERY SUBJECT (MENTIONED ABOVE) IN COMPUTER ENGINEERING LIFE IS EXPLAINED IN JUST 5 MINUTES. 💡💡💡💡💡💡💡💡 THE EASIEST EXPLANATION EVER ON EVERY ENGINEERING SUBJECT IN JUST 5 MINUTES. 🙏🙏🙏🙏🙏🙏🙏🙏 YOU JUST NEED TO DO 3 MAGICAL THINGS LIKE SHARE & SUBSCRIBE TO MY YOUTUBE CHANNEL 5 MINUTES ENGINEERING
Views: 47250 5 Minutes Engineering
Applying Data Mining Models with SQL Server Integration Services SSIS
 
09:42
Applying Data Mining Models with SQL Server Integration Services SSIS
Views: 294 PRS Entertainment
Naive Bayes Theorem explained with simple example (easy trick)
 
24:39
THIS VIDEO SHOWS VERY EASY EXPLANATION OF NAIVE BAYES THEOREM WITH SIMPLE EXAMPLE
Views: 17215 yogesh murumkar
What is Data Mining
 
08:10
Data mining (the analysis step of the "Knowledge Discovery in Databases" process, or KDD), an interdisciplinary subfield of computer science, is the computational process of discovering patterns in large data sets involving methods at the intersection of artificial intelligence, machine learning, statistics, and database systems. The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use. Aside from the raw analysis step, it involves database and data management aspects, data preprocessing, model and inference considerations, interestingness metrics, complexity considerations, post-processing of discovered structures, visualization, and online updating. The term is a buzzword, and is frequently misused to mean any form of large-scale data or information processing (collection, extraction, warehousing, analysis, and statistics) but is also generalized to any kind of computer decision support system, including artificial intelligence, machine learning, and business intelligence. In the proper use of the word, the key term is discovery[citation needed], commonly defined as "detecting something new". Even the popular book "Data mining: Practical machine learning tools and techniques with Java"(which covers mostly machine learning material) was originally to be named just "Practical machine learning", and the term "data mining" was only added for marketing reasons. Often the more general terms "(large scale) data analysis", or "analytics" -- or when referring to actual methods, artificial intelligence and machine learning -- are more appropriate. The actual data mining task is the automatic or semi-automatic analysis of large quantities of data to extract previously unknown interesting patterns such as groups of data records (cluster analysis), unusual records (anomaly detection) and dependencies (association rule mining). This usually involves using database techniques such as spatial indices. These patterns can then be seen as a kind of summary of the input data, and may be used in further analysis or, for example, in machine learning and predictive analytics. For example, the data mining step might identify multiple groups in the data, which can then be used to obtain more accurate prediction results by a decision support system. Neither the data collection, data preparation, nor result interpretation and reporting are part of the data mining step, but do belong to the overall KDD process as additional steps.
Views: 52538 John Paul
K means clustering - finding centroid
 
04:56
K means clustering
Views: 20713 Affan Ahmed
What Is DATA MINING? DATA MINING Definition & Meaning
 
03:43
What is DATA MINING? What does DATA MINING mean? DATA MINING meaning - DATA MINING definition - DATA MINING explanation. Data mining is the process of discovering patterns in large data sets involving methods at the intersection of machine learning, statistics, and database systems.[1] Data mining is an interdisciplinary subfield of computer science with an overall goal to extract information (with intelligent methods) from a data set and transform the information into a comprehensible structure for further use.[1][2][3][4] Data mining is the analysis step of the "knowledge discovery in databases" process, or KDD.[5] Aside from the raw analysis step, it also involves database and data management aspects, data pre-processing, model and inference considerations, interestingness metrics, complexity considerations, post-processing of discovered structures, visualization, and online updating.[1] The term "data mining" is in fact a misnomer, because the goal is the extraction of patterns and knowledge from large amounts of data, not the extraction (mining) of data itself.[6] It also is a buzzword[7] and is frequently applied to any form of large-scale data or information processing (collection, extraction, warehousing, analysis, and statistics) as well as any application of computer decision support system, including artificial intelligence (e.g., machine learning) and business intelligence. The book Data mining: Practical machine learning tools and techniques with Java[8] (which covers mostly machine learning material) was originally to be named just Practical machine learning, and the term data mining was only added for marketing reasons.[9] Often the more general terms (large scale) data analysis and analytics – or, when referring to actual methods, artificial intelligence and machine learning – are more appropriate. The actual data mining task is the semi-automatic or automatic analysis of large quantities of data to extract previously unknown, interesting patterns such as groups of data records (cluster analysis), unusual records (anomaly detection), and dependencies (association rule mining, sequential pattern mining). This usually involves using database techniques such as spatial indices. These patterns can then be seen as a kind of summary of the input data, and may be used in further analysis or, for example, in machine learning and predictive analytics. For example, the data mining step might identify multiple groups in the data, which can then be used to obtain more accurate prediction results by a decision support system. Neither the data collection, data preparation, nor result interpretation and reporting is part of the data mining step, but do belong to the overall KDD process as additional steps. The related terms data dredging, data fishing, and data snooping refer to the use of data mining methods to sample parts of a larger population data set that are (or may be) too small for reliable statistical inferences to be made about the validity of any patterns discovered. These methods can, however, be used in creating new hypotheses to test against the larger data populations. Source: Wikipedia.org
Views: 54 Audiopedia
Data Mining Tutorial || Mr.Narayana Reddy || Architecture , KDD Process And Algorithms - Part - 2
 
18:30
These Videos Will Make You To Perfect In Data Mining Basics And Enhance your Technical Skills ****************Subscribe For More Videos***************** Follow Me On Facebook : https://www.facebook.com/narayanaitechnologies
Data Analytics - Descriptive , Predictive and Prescriptive Analytics
 
11:03
@ Members ~ This video would let you know about rising importance of Analytics where by we are covering all 4 Branches of Analytics like Financial Analytics , Risk Based Analytics , Cash Flow Analytics and Data Analytics. Video would also let you know about 3 types of Analytics covering Descriptive Analytics , Predictive Analytics and Prescriptive Analytics. You are most welcome to connect with us at 91-9899242978 (Handheld) , Skype ~ Rahul5327 , Twitter @ Rahulmagan8 , [email protected] , [email protected] or visit our website - www.treasuryconsulting.in
3 - ETL Tutorial | Extract Transform and Load
 
12:20
This video aims to provide an overview of #ETL (Extract Load Transformation ) process and covers: #extraction Process and its Strategies Transformation and various tasks performed Loading Process and its Strategies ETL tools and its features. ETL Tools: Talend Open Studio, Jaspersoft ETL, Ab initio, Informatica, Datastage, Clover ETL, Pentaho ETL, Kettle ETL Tools Features: Source and Target Data System Connectivity Scalability and Performance Easy Transformation connectors Data Profiling Data Cleaning and Quality Easy integration with Web services Logging and Exception Handling Robust Administration features Efficient Batch and Real time processing For more details visit: http://www.vikramtakkar.com/2015/10/what-is-etl-extract-transformation-and.html Datawarehouse Playlist: https://www.youtube.com/playlist?list=PLJ4bGndMaa8FV7nrvKXeHCLRMmIXVCyOG
Views: 116550 Vikram Takkar
MSBI - SSIS - Processing Cubes And Data Mining Query Task - Part-43
 
09:22
MSBI - SSIS - Processing Cubes And Data Mining Query Task - Part-43
Data Mining using R | Data Mining Tutorial for Beginners | R Tutorial for Beginners | Edureka
 
36:36
( R Training : https://www.edureka.co/r-for-analytics ) This Edureka R tutorial on "Data Mining using R" will help you understand the core concepts of Data Mining comprehensively. This tutorial will also comprise of a case study using R, where you'll apply data mining operations on a real life data-set and extract information from it. Following are the topics which will be covered in the session: 1. Why Data Mining? 2. What is Data Mining 3. Knowledge Discovery in Database 4. Data Mining Tasks 5. Programming Languages for Data Mining 6. Case study using R Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #LogisticRegression #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll-free). Website: https://www.edureka.co/data-science Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. " Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 78250 edureka!
Episode Miner
 
07:54
This video is part of a series showcasing the use of the ProM process mining framework. Each video focusses on a specific process mining task or algorithm. ProM is open-source and freely available at: http://www.promtools.org In this video we discuss the discovery of frequent episodes in event logs. This discovery of frequent episodes is possible in ProM using the Episode Miner. The theory behind the Episode Miner is described in detail in: http://dx.doi.org/10.1007/978-3-319-27243-6_1 For more information on process mining, please visit: http://www.processmining.org/ Created by: Maikel Leemans Special Thanks: Elham Ramezani
Views: 1242 P2Mchannel
Data Mining Made Easy with DSTK ScriptWriter
 
07:26
DSTK - Data Science Toolkit offers Data Science softwares to help users in data mining and text mining tasks. DSTK follows closely to CRISP DM model. DSTK offers data understanding using statistical and text analysis, data preparation using normalization and text processing, modeling and evaluation for machine learning and statistical learning algorithms. DSTK ScriptWriter allows user to write DSTK script to do data mining task easily. The script is like commands, no more memorizing the programming syntax. You can just double click and modify the commands. For more information, visit: http://dstk.tech
Views: 3573 SVBook
Data mining in Hindi
 
05:49
This video explains the definition of Data mining
Data Mining Functionalities || Data Characterization & Data Discrimination || Lecture In Urdu/Hindi
 
09:26
What are data mining functionalities? Data characterization and data Discrimination
Views: 10496 Focus Group
What Is Data Mining? Why We Need Data Mining? Lecture in Urdu/Hindi
 
09:11
what is data mining ? why we need the data mining ? what is the process used for mining the data ?
Views: 1312 Focus Group
Data Discrimination
 
02:00
A project for my AP Computer Science class This is a backup in case my first version fails.
Views: 354 Kaitlyn Wilson
Heuristics Miner Basic
 
06:18
This is the first video in a series showcasing the use of the ProM process mining framework. Each video focusses on a specific process mining task or algorithm. ProM is open-source and freely available at: http://www.promtools.org In this video we introduce the Heuristics Miner, one of the process discovery algorithms available in ProM. The Heuristics Miner is easy to use, quick and can handle noisy event logs. The theory behind the Heuristics Miner is described in detail in: http://dx.doi.org/10.1109/CIDM.2011.5949453 and http://is.ieis.tue.nl/staff/aweijters/WP166.pdf For more information on process mining, please visit: http://www.processmining.org/ Created by: Elham Ramezani, Maikel van Eck, Eduardo González López de Murillas Special Thanks: Sander Leemans, Rafal Kocielnik, Alfredo Bolt, Sebastiaan van Zelst, Shegnan Guo
Views: 7594 P2Mchannel
data mining primitives
 
00:27
I created this video with the YouTube Video Editor (http://www.youtube.com/editor)
Views: 720 Satish Madduri